
I N T E R A C T I O N  OF A S U B M E R G E D  T U R B U L E N T  JET W I T H  A S O L I D  W A L L  

E. P. Volchkov, S. S. Kutateladze,  and A. I. Le0nt'ev 

Zhurnat Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki ,  No. 2, pp. 50-53, 1965 

The turbulent layer  of  a wall jet  has been analyzed in many theoret ica l  and exper imenta l  studies [1-10] .  
Most theoret ical  investigations are based on the simultaneous solution of the equations of the turbulent je t  
and the boundary layer  that  forms at the wall.  The differences l i e  in the methods used to corre la te  the 
veloci ty  and temperature  distributions, as well as in the friction and heat- t ransfer  iaws employed.  In this 
a r t ic le  we present a method based on the further development  o f  the idea  of  conservation of  the laws gov- 
erning wall turbulence with respect to change in boundary conditions. 

1. Integral momentum relat ion.  Consider a plane turbulent je t  issuing from a slot and propagating along a smooth plane 

Fig. 1, Flow in a submerged wall jet .  

wall  (Fig. 1) in a space fi l led with fluid of  the same density. At the wall,  be- 
ginning at  the section x = 0, there forms a wall  boundary layer  o f  thickness 
51 with a veloci ty  max imum at its outer edge (turning point in the ve loc i ty  

profile a w / 0 y  = 0). 

The momentum equation for an e lement  dx of thickness 59 is 

s, 

d--E pw ~ dy  = - -  % (1. 1) 
0 

Or  
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pw~dy = -_ % .  

0 gl 

(1. 2) 

Assuming that the shear stresses at the outer edge of the wall  boundary layer  are equal to zero (as a w / a y  = 0 at y = 

= 61), we set up the momentum equation for the e lement  1-2-3-4 :  

g d pm~dy + pw dy = 0 (1. 3) ~ -  oTE �9 
8x 0 

Hence it follows that 

pw~dy ---- - -  w o pw dy .  
8a 0 

(1. 4) 

With (1.4) taken into account,  Eq. (1. 2) becomes 

W o - ~  pw ~ pw~dy = % .  
0 0 

(i. 5) 

We now introduce the character is t ic  parameters  of  the boundary layer  - the momentum thickness 5 ~ and the dis-  

p l acemen t  thickness 6", defined as 

0 0 

Equation (1.5) can be brought to the  form 

�9 d dwo 
% ~-x IMvo~6**+ P~176 (6*-- 61) d~" (1.6) 
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o r  

dR** [ 8* :~]R** dWo c t , ~ .  
dX + I + ~-, wo a x  = -5 - ~ ' ~ ~  

(1. 7) 

where 

R * *  - -w&**  ~ wo Cp __ ~W R s  = w~s 
- -  ~o ' X = - - F ,  W o ' - w - ~ - ,  2 - -powo~ ' ~vo " 

When the velocities in the wall boundary layer are distributed according to a 1/7 power law, 

6* 6z 
t - t -~-~ ~ 6-~ = C1 = cons t  = - -  8 .  

Equation (1.7) can also be obtained by integrating the boundary-layer equation of motion 

Ow x Ow x 0"~ 
w,~--~ + % - -~  = o~ 

over y from y = 0 to y = 5 z' taking into account the continuity equation and the boundary conditions 

�9 Ow x Owy W x  ~ W u  ~ 0 ,  T = T w at y = 0  
Ox "-t- ~ --= 0 wx = Wo ---- l (x) ,  '~ -= 0 at y-----81. 

we have 

(1.8) 

(1. 9) 

(1. lO) 

2. Friction and heat  transfer. We assume, as usual, that the friction in the wall boundary layer is described by the law 

C1! ~w A (A =0.0t28,  m = 0.25). (2. 1) 
2 powo 2 ~ R *ism" 

Here the values in parentheses are appropriate for a turbulent boundary layer [11] in the region of validity of  the 
1/7 power law. The momentum equation (1. 7) becomes 

dR** R** dWo A (2. 2) 
dX @ C l - ~ o  dX = ~ W ~  

It is known that 51 << 5z [1]. Thereforeone can assume that the law of change of  the max imum veloci ty  in the 
wall jet  remains pract ical ly the same as in the case of  a free jet [1] with an initial cross-section 2S: 

Wo = C2 X~ ~ 3 . 8 X  -~ �9 (2. 8) 

Now, integrating Eq. (2. 2) from X0 to X, we obtain 

{ ( '~)  "A(m2FJ')n"''va+l[ (x.~)C'a(m'l)'a'l~} 1 n ~ - ~  t ~ -,iYf (2. 4) R * *  Ro **(re+l) C~a(m+l) --~ aCz (m + t) -f- a + t 
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Fig, 2. Continuous lines: wall friction co-  
efficient in a submerged wall jet  according 
to Eq. (2. 7). Experimental points: from 
Myers et al. [4']. 

For X >> X 0 we have 

1 

R** r + (2. 
L ~ : ~ l ) +  a t  �9 

Substituting R** into (2. 1), we obtain the friction coefficients 

�9 r w Cll 0.0315 ( [[wox]-o.2) 
powo~ ~ T --'-- R O.~ XO.1 Cp = 0.0825 ".To (2. 6) 

�9 w ct~ 0.457 (2. 7) 
p0tOS2 ~ - - ~  ~ RS0. $ X 1.1 " 

Figure 2 compares the results of  Eqs. (2. 7) (continuous lines) witk 
the experimental  data of  Myers et al. [4]. One can see that the theory 
is in satisfactory agreement  with the experimental  data. Sigalla [9] has 
fcand ~p empir ical  correlation for the wall friction coefficient  ~br X > 
> 30, 

Cfl  ----- 0 .0865  ( V )  -~ , (2. 8) 
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which differs from Eq. (2. 6) by only 5%. Seban and Back [7] have found that in the case of  a jet injected into a uniform 
flow, with jet to free stream mass velocity ratio 

3 < < 9, 

the velocity wo changes according to the law 

w o / w, = 3 . 6 X  - ~  . (2. 9) 

Using the law of  variation o f  velocity and Eqs. (2. 1) and (2. 5), we obtain the friction coefficient for a wall jet 
injected into a weak free stream 

C/i 0.0314 (2. 10) 
_ _  _ _ - -  o 

2 RsO.~ X o. n 

As can be seen in Fig. 3, Eq. (2. 10) is in satisfactory agreement with the experimental data [7]. 

Fig. 3~ Continuouslines: wall friction in the presence of  a 
weak free stream according to (2. 10). Experimental points: 

from Seban and Back [7]. 

With the functional dependence of  the Stanton number 

S = 1/2C/P~~ 

(where P is the Prandtl number) taken into account, Eqs. (2. 6) and (2. 10) yield: 

a) Stanton and Nusselt numbers for a submerged wall jet 

a 0.t2 
S2 = pow, C'---~ = Bso'2xo.op o'e ' 

=  OSx_o, p o ,  
Nx = ~ -  = 0 . i 1 9 7  \--~-o / 

(2. 11) 

(2.12) 

b) Stanton number for a wail jet injected into a weak stream 

( p w ) , )  3 ,  S~ = 0.1t3 
(pw)oo Rso. 2 X o. 6e,po. 6 �9 

(2. i s )  
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Heat-transfer coefficient in a wall jet. a, b, c) Compu- 
ted from Eqs. (2.11), (2.13), (2.14). Triangles: experiments [5] 

at t w -'- const; circles: experiments [6, 7] at qw = corot, 3 < (PW)s/ 
/(pw),o < 9; squares: experiments [6] at qw = const, 1. 05 < (OW)s/ 

/@w)~o < 1. 1. 
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Figure 4 compares the results obtained from (2.11) and (2. 18) with the exper imental  da ta  of  Myers et al .  [5] and 
Seban and Back [6, 7]. The same figure also shows Seban's [6] exper imental  data for the case  (PW)s/(PW)o o ~ 1, which 
are well correlated by the usual equation 

S~ = 0 .0288R~, -~  -~ �9 (2. 14) 

Jakob et al.  [10] found the exper imenta l  correlat ion 

N x  = -2" = 0 . 1 0 5  - -  X - O . 4 ,  (2. 15) 

which is ident ica l  with (2. 13) when P = 0. 71. 
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